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a b s t r a c t 

The process of spermatogenesis in human involves three organized biological processes, 

through which spermatogonia cells undergo mitosis, meiosis and finally differentiation into 

mature spermatozoa. Spermatogenesis requires a specifically regulated gene expression 

patterns. The microRNAs are a novel class of post-transcriptional regulators that have been 

reported to be involved in so many cellular processes including spermatogenesis, in which 

microRNAs are expressed in a stage-specific manner. Specific microRNAs are involved in 

the process of spermatogenesis and they have been identified to regulate and renew sper- 

matogonia stem cell as well as been implicated in cancer biology regarding their effect in 

regulation of some of the cancer/testis genes. 

© 2019 The Authors. Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 

Spermatogenesis is the process by which spermatozoa, are produced within the epithelium of highly convoluted semi-

niferous tubules inside the testis [1] . It begins during post-natal life same time when spermatogonial stem cells enter the

differentiation pathway [2] . Colony expansion of the differentiating germ cells occurs when differentiating spermatogonia

undergo successive mitotic divisions [3] . After colonial expansion phase, germ cells enter the five sub stages of long-lasting

meiotic prophase I as spermatocytes during which homologous chromosomes pair to form synaptonemal complex and ho-

mologous recombination occurs [4] . Subsequently, spermatocytes undergo a second meiotic division called reduction division

to separate the sister chromosomes into two cells to generate secondary spermatocytes, however secondary cells are short

lived as they divide again very quickly to generate four haploid round spermatids that initiates the spermiogenesis phase.

Spermiogenesis phase entails the formation of sperm-specific structures, nucleus reshaping and compaction of the chro-

matin via the replacement of histone with sperm-specific protamines [5] . Finally the mature spermatozoa are released into

the seminiferous tubular lumen through the process of spermiation [6] . Anatomically the seminiferous epithelium is struc-

tured into cyclic stages at a specific phase of spermatogenesis that are identifiable by groups of germ cell types through the
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cross-sectional area of the tubule. There are 12 cyclic stages usually labeled I–XII that have been identified in mice, 6 stages

in man and 12 stages also in monkeys, all arranged in a coherent order of developmental progression [7] . 

Finally, the complex process of spermatogenesis is also under the control of the secretion of hypothalamic-pituitary-

gonadal secretions like gonadotropin-releasing hormone regulates the release of two important hormones, Follicle stimulat- 

ing hormone and Luteinizing hormone from the anterior pituitary gland, which are both responsible for the stimulation of

interstitial Leydig cells to produce T-cells or to regulate Sertoli cells [8] . 

Spermatogenesis requires a high level of meticulous and temporally regulated gene expression patterns governed by

transcriptional, post-transcriptional and epigenetic processes [9] . Numerous protein coding genes have been reported to be

involved in the process of spermatogenesis [10,11] . However, the underlying mechanisms are yet to be fully understood. 

MicroRNAs (miRNAs) are evolutionary conserved, short single-stranded non-coding RNA sequences ranging from 19 to 24

nucleotides that post-transcriptionally regulate up to 60% of protein encoding genes by binding to complementary sequences

in the 3 ′ untranslated region of messenger RNA transcripts, to prevent translation [12] . They are responsible for endoge-

nously regulating gene expression at the post transcriptional level via translation repression or mRNA degradation. MicroR-

NAs are critical controllers of cell differentiation and functions, mediating a several cellular processes including those inte-

gral to spermatogenesis. In addition, they have also been implicated in the pathogenesis of several diseases like Alzheimer

[13] , cerebral malaria [14] , malaria [15] prostate cancer [16] . Research studies have demonstrated that small RNAs includ-

ing miRNAs are extensively involved in male germ cell differentiation and development [17,18] and as well are transcribed

during spermatogenesis. The miRNAs are differentially expressed in a cell-specific and step-specific manner [19,20] . In this

mini-review, we will give a comprehensive report on the role of miRNAs in the regulation of spermatogenesis and the re-

lated consequences. 

Biogenesis of miRNA 

Normal progression of the process of spermatogenesis depends on precise regulated gene expression. According to miRNA

database ( http://www.mirbase.org ), there are 1881 miRNA loci that have been identified in the human genome making up

of 1% of the total human genomes [21] . miRNAs are considered by several researchers as important regulatory factors that

are responsible for the control and regulation of the expression of a wide range of protein-coding genes and regulatory

mechanisms of these miRNAs occur at epigenetic and transcriptional levels. It should be noted that meiotic cells are syn-

thesizing sites for numerous spermiogenic proteins mRNAs and are translationally regulated and momentarily stored until

further stages of spermatogenesis when they are needed. The mechanism of regulation of the miRNAs function is largely

post-transcriptionally via the modification of the stability of their target mRNAs [22,23] . Castellano and co-workers reported

that the miRNA genes are located in the intergenic regions of the mammalian genome [24] . In addition, recent and previ-

ous research works have demonstrated that small fraction of the transcribed human genome encodes for proteins [25] as

such large fraction of the RNA transcripts are non-coding, however these non-coding RNAs have been implicated in several

important cellular functions. In 2012, Rinn and Chang demonstrated that these non-coding RNAs have an important role in

the regulation and control of gene expression, both functioning at transcriptional and post-transcriptional levels [25] . 

The transcribing process of most miRNAs are done by the enzyme RNAPol II [26] which serves as hairpin loop precursors

and are acted upon by a nuclear microprocessor complex, that is made up of RNase III enzyme (Drosha) and the double-

stranded RNA-binding protein DGCR8 (DiGeorge syndrome critical region 8 gene). DGCR8 is responsible for identifying the

RNA substrate and Drosha performs the function of an endonuclease enzyme [27] 

Yadav and colleagues reported that the male germ cells have shown to express different classes of small RNAs, that

include Dicer- independent PIWI-interacting RNAs, Dicer-dependent miRNAs and endogenous small interfering RNA (siRNA) 

(endo-siRNAs) [28] . 

Several researchers have reported the miRNA profiling of an immature sertoli cells via techniques like sequencing, mi-

croarray, reverse transcriptase-PCR [29,30,31] and the expression of these miRNA are regulated by male sex hormone called 

androgen [32,33] . However these miRNA are differently expressed in the testis but are also responsible for regulating the

various genes expressed within the Sertoli cells as such the male sex hormone plays a vital role in regulating and controlling

the process of spermatogenesis via miRNA-dependent process [32] . 

Functions of miRNAs as a spermatogonial stem cell regulators 

The Y-chromosome has been identified as the trigger behind the development of the testis through its gene Y-

chromosomal testis-determining gene, SRY [34] . Expression of this gene within the precursors of the supporting cell or

Sertoli cells of the genital ridge initiates series of events that leads to the differentiation of testis-specific cell types [35] .

The testicular cords are formed by Sertoli cells located and surrounded by primordial germ cells, that later differentiates into

gonocytes and peritubular cells [36] . Furthermore gonocytes cells are earlier undergo a rapid mitotic division but are later

arrested in the G 0 phase of cell cycle, where they remain inactive and differentiate into spermatogonia after birth [37] . The

seminiferous tubules are basically made up of two compartments namely: basal compartment and adluminal compartment,

the basal compartment houses the spermatogonial stem cells (SSCs) and are responsible for the maintenance of the stem cell

pool by undergoing self-renewal divisions. The regulation of spermatogonial stem cells status is among the functions of the

http://www.mirbase.org
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miRNAs and as a matter of fact some specific miRNA has been identified to be preferentially expressed in spermatogonial

stem cells namely: miR-2, miR-34c, miR-182, miR-183, and miR-146a via a high-throughput sequencing technique. 

Niu and co-worker reported that the inhibition of miR-21 in SSC-enriched germ cell cultures resulted in apoptosis of

germ cells [38] , suggesting that miR-21 plays a vital role in sustaining spermatogonial stem cell population. miR-20 and

miR-106a though preferentially expressed in spermatogonial stem cells have also been identified to be responsible for the

targeting Stat3 and Ccnd1 [39] . In addition, Huszar and colleague also reported that miR-146 which is highly expressed in

undifferentiated spermatogonia cell can be down-regulated by retinoic acid-induced differentiation of spermatogonia and

they suggested that miR-146 may be involved in the regulation and control of retinoid acid-induced spermatogonial differ-

entiation in the mouse [40] . There are other groups of miRNAs that have been identified to specifically on X-chromosomes

involved in the maintenance of an undifferentiated status of spermatogonia called the X-chromosomes clustered miR-221

and miR-222 [41] . 

Furthermore, Yang and co-worker reported cases of loss of stem cell differentiation abilities after impaired functions of

miR-221/miR-222 [41] . The deletion of Mir-17-92 cluster led to reports of small testes, oligospermial within the epididymis

in mice by Tong and colleagues [42] . However, the authors also reported that deletion of Mir-17-92 cluster also resulted

in high expression of another miRNA named miR-106b-25, suggesting an inversely proportional expression relationship be-

tween these two clusters [42] . However not all miRNA increases the differentiation of spermatogonia stem cells, few of them

like the let-7 family miR- NAs, have been demonstrated to have a contrasting and opposite expression effects, that can be

triggered by retinoic acid stimulation and differentiation followed by down-regulation of Mycn, Ccnd1, and Colla2 which are

all let-7 family targets [43] . 

Expression profiling of testicular miRNAs 

Several studies have demonstrated that multiple miRNAs are expressed exclusively in both human and mice testis or

germ cells through the use of profiling techniques like miRNA microarrays, RT-PCR, or small RNA sequencing [44,45,46] .

Yang and colleagues reported 770 known and five novel miRNAs in normal human testes via Solexa sequencing technology

[41] . Through microarray analysis, it was reported that most miRNAs are differently expressed in meiotic germ cells [47] .

The expression of miRNAs arrays varies between mature and immature testes in human which was corroborated by Yan

and colleague when they reported the detection of 14 expressed and 5 less-expressed miRNAs in immature testes when

compared with adult testes [48] . Table 1 shows summarized expression profile of miRNAs in testis. 

miRNA and spermatogonial stem cell renewal 

The process of spermatogenesis is initiated from spermatogonial stem cells (SSCs), which can either continue to replicate

to ensure a constant supply of spermatogonia to initiate spermatogenesis as spermatogonial A dark or as spermatogonial A

pale to undergo differentiation into a spermatogonial progenitor and mitotically divides into Type B cells [49,50,51,52,53] .

van den Driesche and co-workers reported that constant supply of spermatozoa depends on striking a balance between

the process of self- renewal and differentiation of spermatogonial stem cells by sustaining and conserving a populace of

undifferentiated spermatogonial stem cells [52] . miRNAs, serves as an important endogenous regulator in mammalian cells

and as such regulates the fate of SSCs during spermatogenesis. Several researchers have reported the expression of numer-

ous miRNAs in THY1-enriched undifferentiated spermatogonia and they include miR17–92 cluster [42] , miR290–295 cluster

[54,55] , miR146 [40] , miR20 [39] , miR106a [39] , miR221, and miR222 [41] . Kotaja reported the under expression of these

miRNAs during retinoic acid-induced spermatogonial differentiation suggesting their critical role in regulating the process

of proliferation and differentiation of SSCs during spermatogenesis [56] . Table 2 shows summary of miRNAs linked to the

maintenance of pluripotency in germ cells. 

The role of miRNAs in spermatocytogenesis and spermiogenesis 

Spermatocytogenesis and spermiogenesis are important and crucial cellular processes to germ cells in the male. High

transcriptional activity but reduced translational activities are the properties of the phases of Spermatocytogenesis. Accord-

ing to Kotaja, control of gene expression after transcription process is an important feature of spermatogenesis in mammals

[56] . He also reported that numerous miRNAs are differently expressed by spermatocytes and spermatids and are important

in regulating meiotic and post-meiotic gene expression [56] . See Table 3 summarizes some important miRNAs that play a

regulatory role in spermatocyte meiosis and spermiogenesis. 

Testicular miRNAs and Cancer/ Testis genes 

Cancer/Testis genes (CT genes) are a group of testis specific genes which are tumor-associated and immunogenic antigens

and are abnormally expressed in human tumors. Based on their in vivo immunogenicity and tumor-restricted expression pat-

tern, CT genes are known as potential targets for tumor-specific immunotherapeutic targets and developing cancer vaccines

[57] . Most of CT genes express both during spermatogenesis and tumor growth, so the testicular miRNAs may influence the

target genes in cancer cells as well. 
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Table 1 

Expression profile of miRNAs in testis. Culled and modified from Wang and Xu [18] . 

Location Expression References 

Mouse testis 29 miRNAs were identified as novel out of 141 detected 

miRNAs from the mouse testis 

[44] 

Human testis Through Solexa sequencing technology, 770 known and 5 

novel human miRNAs were detected. 

[74] 

Saanen dairy goat testis Immature and mature 

testes (mouse) 

91 novel paired miRNAs were detected and 14 were 

expressed and 5 non-expressed miRNAs were found in the 

immature testis compared with the adult testis 

[75,48] 

Immature and mature testes (pig) 51 miRNAs were significantly expressed and 78 miRNAs 

were less expressed in mature testes 

[76] 

Testis tissue from the immature rhesus 

monkey, mature rhesus monkey, and mature 

human 

26 miRNAs were shared by the IR and MR, and the IR and 

MH. 

[77] 

Mouse spermatogonia In the neonatal mice spermatogonia cells, both miR17–92 

and miR290–295 clusters were found to be enriched 

[78] 

Human spermatozoa 68 small RNAs have been identified. [79] 

Spermatozoa of patients with varicocele In patients with varicocele compared with the control 

group, miR15a was significantly down regulated. 

[80] 

Testes of patients with non-obstructive 

azoospermia and normal human testes 

In patients with non-obstructive azoospermia, 154 

differentially down-regulated and 19 up-regulated miRNAs 

were found. 

[81] 

Human spermatozoa in patients with different 

spermatogenic impairments 

50 expressed and 27 less expressed miRNAs were found in 

asthenozoospermic males while 42 expressed and 44 less 

expressed miRNAs were found in oligoasthenozoospermic 

males compared with normozoospermic males 

[82] 

Cryptorchid and normal testes In a mouse with cryptorchid testes, miR135a was 

expressed at a reduced level. 

[83] 

Human testicular tissues of infertile men with 

different histopathological patterns 

Samples from Sertoli cell only, mixed atrophy, and germ 

cell arrest groups, contains a total of 197, 68, and 46 

miRNAs respectively when compared with normal 

spermatogenesis 

[84] 

From Wang and Xu, Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Copyright © 2019 by Copyright clearance center 

(CCC). Reprinted by permission ofBioscientifica Limited and Society for reproduction and fertility. 

Table 2 

miRNAs implicated in maintenance of pluripotency in germ cells. Culled from Wang and Xu [18] . 

miRNA Expression Targets gene References 

miR17–92 cluster THY1 + -enriched undifferentiated spermatogonia Bcl2l11, Kit, Socs3, and Stat3 [42] 

miR106b-25 THY1 + -enriched undifferentiated spermatogonia Bcl2l11, Kit, Socs3, and Stat3 [42] 

miR290–295 cluster Highly enriched in the germ cell population of the 

6-day-old testis, multipotent adult germ cells, and 

embryonic stem cell 

Stat3 and Ccnd1 [54] 

miR146 Highly expressed in undifferentiated spermatogonia Med1 [40] 

miR221 and miR222 THY1 + -enriched undifferentiated spermatogonia [41] 

miR20 and miR106a miR21 Spermatogonial stem cells. P12 [39,38] 

miR135a Spermatogonial stem cells. Foxo1 [83] 

miR302-367 cluster Primordial germ cells, ES cells NR2F2 [85] 

miR376a Less expressed in mature mouse testes CDK2 and AGO2 [86] 

miR302 cluster Overexpressed in adult (undifferentiated) and pediatric 

germ cell tumors 

NR2F2 [85] 

miR335 and miR367 Less expressed in mature mouse testes and Embryonal 

carcinoma, ES cells 

CCNT2, CCD2, RSBN1, RUNX2, LATS2, KLF4, 

RUNX1, SYNJ1, and SMAD6 

[87,88] 

From Wang and Xu, Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Copyright © 2019 by Copyright clearance center 

(CCC). Reprinted by permission ofBioscientifica Limited and Society for reproduction and fertility. 

 

 

 

 

Synaptonemal complex proteins (SYCP) help homologous chromosome pairs to join in the process of homologous recom-

bination in meiosis. SYCP3 is known as a cancer testis gene as well, with over expression in different cancers such as breast

cancer [58,59] . There are reports on the effects of miRNAs to control their expression in some spermatogenic stages [60] . 

Opa interacting protein 5 (OIP5) which show testicular expression is upregulated in some types of human cancers such

as acute myeloid leukemia [61] and breast cancer [62] . Li H et al. reported that OIP5 is a target for miR-15b-5p which
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Table 3 

miRNAs that play a regulatory role in spermatocyte meiosis and spermiogenesis. Culled from Wang and Xu [18] 

miRNAs Expression Targets Functions References 

miR449 Expressed in mature rhesus 

monkey and mouse testis, 

differently expressed in mouse 

testes and limited to 

spermatocytes and spermatids 

MECP2, ASB1, BCL2, NOTCH1, 

CASP2, KITLG, VCL, FOXJ2, 

INHBB, SOX11, CCNE2, GMFB, 

and DLL1 

Suppresses the proliferation of 

a germ cell line, GC-1spg 

[89] 

miR34a Expressed in mature mouse 

testis, up-regulated from day 7 

to day 14 in mouse testis 

CCND2, BLC2, GMFB, and SIRT1 Suppresses proliferation, 

promotes apoptosis 

[45,90] 

miR34b Expressed in mature rhesus 

monkey testis, up-regulated 

from day 7 to day 14 in mouse 

testis 

NOTCH1, LGR4, VEZT, MAN2A2, 

and FOXJ2 

Regulates the germ cell 

proliferation and survival 

[91] 

miR34c Highly expressed in isolated 

pachytene spermatocytes and 

round spermatids 

CCND3, CCNG1, CCNB1, CCNC, 

CCNE1, CDK4, CDK6, E2F5, FOS, 

CDC2, TGIF2, NOTCH2, STRBP 

LGR4 KLF4, NOTCH1 PPP1CC, 

GALT, KITLG, SPAG4, CCNL, 

ZFP148, and GMFB 

Cycle regulator, promoted 

mGSC apoptosis, SSC 

differentiation, enhances the 

germinal phenotype of cells 

already committed to this 

lineage 

[92,93] 

miR184 Localized to the germ cells of 

mouse testis 

Ncor2 Promotes the proliferation of a 

germ cell line, GC-1spg 

[75] 

miR24 Pachytene spermatocytes MBD6 and H2AX Potential role in meiosis [47] 

miR214 Mainly expressed in pachytene 

spermatocytes 

WDTC1, heat shock proteins Potential role in meiosis [47] 

miR320 Expressed in all germ cells Protocadherins Cell adhesions [47] 

miR18 Highly expressed in 

spermatocytes 

HSF2 Male germ cell maturation [94] 

miR122a Enriched in late-stage male 

germ cells 

TNP2 Regulates the chromatin [95] 

miR355 Up-regulated in adult testis Rsbn1 Transcriptional regulation in 

haploid germ cells 

[48] 

miR181b Up-regulated in adult testis Rsbn1 Transcriptional regulation in 

haploid germ cells 

[54,48] 

miR181c Up-regulated in adult testis Sox5, Sox6, and Rsbn1 Transcriptional regulation in 

haploid germ cells 

[54,48] 

miR185 Preferentially expressed in 

pachytene spermatocytes 

RHOA and CDC42 Cell cycle regulator [47] 

miR191 Highly expressed in testis, 

preferentially expressed in beta 

pachytene spermatocytes, 

down- regulated in 

teratozoospermia 

BNC2 Required for normal sperm 

morphology 

[47] 

From Wang and Xu, Role of microRNAs in mammalian spermatogenesis and testicular germ cell tumors. Copyright © 2019 by Copyright 

clearance center (CCC). Reprinted by permission ofBioscientifica Limited and Society for reproduction and fertility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

regulates hepatocellular carcinoma growth and metastasis, through the AKT/mTORC1 and β-catenin signaling pathways [63] .

Zeng H et al. reported that breast cancer progression inhibits by targeting SOX2 via upregulation of miRNA-129-5p, when

downregulation of lncRNA OIP5-AS1 occurs [64] . 

The Testis Specific Gene A10 (TSGA10) is localized in sperm tail as a fibrous sheath protein. The expression pattern

suggests that TSGA10 may be involved in active cell division, differentiation, and migration [65] . Expression of Tsga10, as a

gene with critical function in spermatogenesis, increases in 6.6 folds during transition from meiotic to post-meiotic phase

[66] . TSGA10 has close interaction with hypoxia inducible factor (HIF-1 α) and increased expression of TSGA10 correlated

with decreased HIF-1 α transcriptional activity which ends to inhibition of angiogenesis as well as invasion characteristics in

HeLa cells [67] . Aberrantly expression of TSGA10 is reported in several cancers such as acute lymphoblastic leukemia [68] ,

breast cancer [69] and bladder carcinoma [70] . Bao L et al. reported that angiogenesis mediates by repressing TSGA10 as a

novel target gene, by metastasis-associated miR-23a, from nasopharyngeal carcinoma-derived exosomes [71] . Yuan X et al.

suggested two binding sites for miR-577 at the 3 ′ UTR of the TSGA10 and in interactions of MiR-577 and TSGA10 regulates

esophageal squamous cell carcinoma [72] . 

Tumor suppressor function of miRNA-874 via targeting Cancer/Testis gene HCA587/MAGE-C2 is reported by J Cancer et al.

HCA587/MAGE-C2 plays an active role in tumorigenesis by promoting the growth and survival of tumor cells. Overexpression

of miR-874, as well as HCA587/MAGE-C2 silencing, resulted in suppression of tumor cell proliferation and invasion [73] 
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Conclusion 

Several studies have successfully demonstrated the clinical and biological importance of miRNAs in the regulation of

spermatogenesis; however, their expression still remains phase and cell specific which plays a significant feature in reg-

ulating the process of spermatogenesis. Future in-depth studies about the phase and cell specific expression of miRNAs

during spermatogenesis are still required in either human or rat testes as it would unravel the missing links of etiology of

male infertility and thereby leading to possible potential diagnosis and treatment of male infertility and the wide aspects

of spermatogonial stem cells as well as their application in cancer/testis gens biology. Application of single-cell small RNA

sequencing could accurately profile the miRNAs for specific type of germ cells. Furthermore, the use of CRISPR/cas9 system

to knock out specific spermatogenesis related gene would help unravel the mechanism underlying the role of miRNA in

spermatogenesis. 
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