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a b s t r a c t 

Schizophrenia and autism share some genotipic and phenotypic aspects as connectome 

miswiring and common cognitive deficits. Currently, there are no medical tests available 

for either disorders, and diagnostics for both of them include direct reports of relatives 

and clinical evaluation by a psychiatrist. Despite several medical imaging biomarkers have 

been proposed in the past, novel effective biomarkers or improvements of the existing 

ones is still need. This work proposes a dynamic functional connectome analysis com- 

bined with machine learning techniques to complement the present diagnostic procedure. 

We used the moving window technique to locate a set of dynamic functional connectiv- 

ity states, and then use them as features to classify subjects as autism/schizophrenia or 

control. Moreover, by using dynamic functional connectivity measures we investigate the 

question whether those two disorders overlap, namely whether schizophrenia is part of 

the autism spectrum and which brain region could be involved in both disorders. The re- 

sults reveal that both static and dynamic functional connectivity can be used to classify 

subjects with schizophrenia or autism. Lastly, some brain regions show similar functional 

flexibility in both autism and schizophrenia cohorts giving further possible proofs of their 

overlaps. 

© 2018 The Authors. Published by Elsevier B.V. on behalf of African Institute of 

Mathematical Sciences / Next Einstein Initiative. 

This is an open access article under the CC BY license. 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

Introduction 

Schizophrenia and autism spectrum disorder (ASD) are neurological disorders. Individuals who are affected by any

of these disorders have difficulties with communication and with what is usually considered normal social behavior.

Schizophrenia is a psychiatric disorder characterized by so-called positive symptoms as having delusion, hallucination, dis-

ordered thinking and speech and disorganized behavior [1] . Accompanying those, negative symptoms as reduced speaking,

and reduced expression of emotions via facial expression or voice tone can occur [2] . ASD is a set of neuro-developmental
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disorders characterized by impaired social interaction and repetitive behaviors [3] . Among the expressed traits, deficits in

nonverbal communicative behaviors used for social interaction can appear, as poor verbal and nonverbal communication,

eye contact and body language deficits. In many cases subjects have also deficits in developing, maintaining, and under-

standing relationships, and social contexts [4] . Besides, the majority of ASD subjects fulfill diagnostic criteria for an anxiety

disorder [5] . ASD severity is classified according to the level of support required by the ASD subject [4] . 

Those disorders have been also studied by using magnetic resonance imaging (MRI) [6,7] . Among the recent advances,

connectomics is the most promising. A connectome is a comprehensive representation of the brain as a graph, where nodes

are the brain regions, and edges represent connections either structural or functional among those brain regions [8] . The

general spread miswiring in connectomes of subjects with either disorders has led the hypothesis that schizophrenia is part

of the autism spectrum as the two disorders clearly overlap at some aspects [9] . Overall, schizophrenia is found to cause

misconnections among brain regions [10] and ASD is identified with patterns of both high and low connectivity among

brain regions [3,11] . Both disorders are associated with decreases in inter-hemispheric connectivity. Particularly between

frontal and posterior regions in the parietal lobe and occipital cortex [12,13] , and the corpus callous [14] . Recently, Yahata

et al. identified a small number of connections which can discriminate ASD subjects from healthy control [15] . Mastrovito

et al. compared atypical functional connectivity between ASD to typically developing children and schizophrenia to normal

control, highlighting also common connectivity features between ASD and schizophrenia [16] . 

A new method is gaining attention in the study of brain activity: dynamic functional connectivity (dFC), an approach

to analyze the functional connectivity from subsets of functional MRI (fMRI). This technique instead of using time series at

once it uses parts of them defined by overlapping or non-overlapping windows of the overall series [17] . In this paper we

focus on using dFC features with machine learning tools and novel graph metrics. More specifically we use support vector

machine (SVM) for distinguishing either ASD or schizophrenia from control subjects. Moreover we quantify local dynamic

differences and how they overlap between the two pathologies using the flexibility index of brain regions. Flexibility of

each node/area corresponds to the number of times that it changes module allegiance (modularity) on time while we move

across the dFC representation. A way to quantify changes in modularity, in such a dynamic network, is to perform cluster-

ing for each time-point independently and to count changes from one time point to another. However, computing cluster

independently for individual time points has limitations as not taking into account the fact that same elements exist at

different time points. Moreover, identifying the same labeling for each run can be cumbersome as many algorithms assign

randomly labels at each run. Therefore, most common clustering approaches have not been available for time-dependent or

multilayer networks, and ad hoc methods have been introduced to overcome those limitation [18,19] . Mucha et al. developed

a methodology, generalizing the determination of community structure via quality functions to multislice networks, which

are defined by coupling multiple adjacency matrices as a generalized Louvain modularity [20] . For this reason this technique

appears appropriate to cluster time dependent multilayer networks as dynamic FC matrices. 

Functional connectivity 

Functional Connectivity (FC) is a measure of how temporally dependent processes interact. In the context of fMRI, these

dependences is related to brain regions anatomically separated and their neuronal activation interact. In a functional connec-

tome, edges are defined by the degree of association between regions during periods. Those associations can be determined

by methods such as cross-correlations in the time or frequency domain, mutual information or spectral coherence [21] .

Static Functional Connectivity is a global measure of functional connectivity of brain activity for the whole BOLD fMRI time

series. Dynamic Functional Connectivity refers to the observed phenomenon that functional connectivity changes over time

[22] even for resting-state acquisitions. It is sometimes referred as “time-varying” connectivity [54] . Contrary to the previous

notion that resting-state functional connectivity are stationary over time, studies revealed that when a brain is scanned over

a period of time, it reveals a number of functional connectivity states which are susceptible to variations. Those have been

also investigated with emphasis on matrix decompositions such as principal component analysis and independent compo-

nent analysis [23] . Moreover, the nature of dynamic functional connectivity can be used to distinguish between healthy and

afflicted brain [17,24] . This technique has already been used in combination with SVM to classify subjects with traumatic

brain injuries with high precision [25] . 

Moving window technique 

Moving window analysis is a tool for analyzing the dynamic functional connectivity of brain activity detected from fMRI

scan [26] . The concept of windowing is based on taking a time-window of fixed length and computing the functional con-

nectivity of the data point inside of this time-window. After that, the window is moved with a fixed step, until the end

of the time-series. Those steps can be defined to give overlapping or consecutive windows. The main parameters of win-

dow analysis are the window length and the window step. The results of any window analysis can largely influenced by

the choice of these parameters [27] . However, there are no universally recognized values for these parameters and results

can be just the consequence of over-fitting. The general rule is that the choice of window’s size should be large enough to

permit robust estimation of functional connectivity and to resolve the lowest frequencies of interest in the signal, and yet

small enough to detect potentially interesting transients [27,28] . The choice of window length may depend on whether the

time series changes rapidly. Most researchers use window length between 8 and 240s [24] . 
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Method and data 

The present study seeks to use SVM to diagnose ASD/Schizophrenia and to look for overlaps between the two disor-

ders. To achieve the first objective, for each subject the fMRI brain data was preprocessed and converted into FC ma-

trix(matrices) by using windowing (fixed window for static or moving window for dynamic functional connectivity) and

the Pearson correlation. The second objective is reached by using the flexibility score for different brain regions comparing

either ASD or schizophrenia against control subjects, and then comparing the statistically significant results for between

ASD and schizophrenia. 

Data and experimental settings 

We used two different datasets to perform the experiments. The ASD dataset is obtained from the publicly available

ABIDE-II dataset [29] . More specifically the San Diego State University cohort comprising 54 subjects (31 ASD and 23 con-

trol), of age between 7 and 50 years, 72% male. For each subject, blood-oxygenation level dependent (BOLD) volumes were

acquired in one 6: 10 minute resting state scan consisting of 185 whole brain volumes (TR = 20 0 0 ms, TE = 30 ms, flip

angle = 90 ◦, matrix size = 64 × 64 matrix, 3 . 4 × 3 . 4 × 3 . 4 mm 

3 resolution, 42 axial slices covering the whole brain). The

schizophrenia dataset is obtained from the Center for Biomedical Research Excellence (COBRE) dataset [30] . The dataset in-

cluded 146 subjects (2 discarded due to artifacts) ranging in age between 18 and 65 (70 with schizophrenia and 74 controls,

70% male). Practically, the two cohorts were matching per gender but only slightly per age as the COBRE cohort has a mean

age of 36.5 years while the ABIDE cohort has a mean age of 22.65 years. BOLD volumes were obtained using TR = 2 s, TE

= 29 ms, flip angle = 75 °, 32 slices, voxel size = 3 × 3 × 4 mm 

3 , matrix size = 64 × 64. Throughout the resting state scan,

participants were instructed to relax, and to keep their eyes open and centered on a white fixation cross displayed on black

background in the center of a screen, using a rear projection display. 

Pre-processing and connectome construction 

For both fMRI datasets data have been pre-processed according to a standard pipeline: motion correction, mean intensity

subtraction, pass-band filtering with cutoff frequencies of [0.005–0.1 Hz] and skull removal. To account for potential noise

from physiological processes such as cardiac and respiratory fluctuations, nine covariates of no interest have been identified

for inclusion in our analyses [31] . To further reduce the effects of motion, compensation for frame-wise displacement has

been carried out [32] . Linear registration has been applied between the Harvard-Oxford atlas [33] and the reference volume

by using linear registration with 12 degrees of freedom. This atlas has been used during the experiments due to its small

number of regions of interest ( r = 96) considering that the features used in the classification are the correlation matrices.

In fact, the brain dataset produced a single 96 × 96 correlation matrix for each subject with rows and columns representing

brain regions and the elements of the measures of association between the brain regions defined by the atlas. Due to

the symmetry of correlation matrices, only the upper triangular parts were considered and flattened into 1D vectors for

subsequent use as feature vector x i . For any given symmetric matrix of dimension N × N , the upper triangular gives a total of

N(N − 1) / 2 elements, which for the static FC means a feature vector of 4560 elements. The length of the windows has been

chosen in nested cross-validation manner identifying the shape leading the highest classification but simpler configuration

given by less windows used. Namely 30 time points and non-overlapping windows, generating 5 time-windows. This values

have been used for both dataset for consistency. As all the time series of the schizophrenia dataset were 150 time points,

and the time series for the ASD dataset were 180 time points (the last 30 times points were discarded for consistency). 

Case-control classification 

The used features for the SVM-based classification are the dFC matrices. In our experiments, functional connectivity is

defined by using the Pearson correlation between variables A and B being brain region as 

ρ = 

cov (A, B ) √ 

V ar(A ) 
√ 

V ar(B ) 
. (1)

In windowing analysis, we define correlation time series ˆ ρ = ( ̂  ρ1 , . . . , ˆ ρL ) over a functional brain data by successively mov-

ing, at a constant rate, a window of predetermined length and shape over the data. We compared results obtained using

one static FC matrix per subject with results using several dFC matrices per subject. Dynamic functional analysis was per-

formed using using the concatenation of the 1D vectors. The dataset were labeled accordingly and used to train and test the

selected SVM model. The validity of the model was evaluated using leave-one-out cross validation and Receiver Operating

Characteristic (ROC) curve. 

Here we review the main concept of SVM [34] . SVM is a supervised learning method which constructs a hyperplane

or set of hyperplanes in a high- or infinite-dimensional space used for classification. Considering the problem for binary

classification, such as ASD versus control, we have two classes of subjects (samples) and we want to separate (classify)

them. The data are given as x 1 , x 2 , . . . , x m 

∈ X, y 1 , y 2 , . . . , y m 

{±1 } . Such that X is a non-empty set in the domain of x i features,

and y are the targets or labels. We assume that the data are into the Hilbert product space H to allow us to measure the
i 
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Fig. 1. Schematic representation of multilayer graph with two nodes which change community across time twice. The dashed lines highlight the corre- 

sponding brain regions, which are also intracommunity edges. Each time point is a slice/layer of the multilayer network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

distance of the vectors in that space. Among all hyperplanes we seek for the optimal separable hyperplane that maximize

the distance between the data points (vectors). This can be achieved by using the hyperplane decision function 

f (x ) = sgn 

( 

m ∑ 

i =1 

y i αi < x i , x j > + b 

) 

(2) 

where αi are Lagranger multiplier and b is a threshold which can be computed by convex optimization [34] . 

Functional connectivity differences 

As we are mostly interested in dynamic functional connectivity, we used a metric quantifying changes in it. The flexibility

index for each node of a connectome defined at different time points is defined as the number of times that it changes

community allegiance, normalized by the total possible number of changes. We consider changes in functional connectivity

possible only between consecutive time points. The flexibility index has been introduced by Bassett et al. [35] to quantify

changes in connectomes related to learning at different time points. Biologically, network flexibility could be driven by

physiological processes that facilitate the participation of cortical regions in multiple functional communities (clusters) [35] .

As communities organization change smoothly with time, the flexibility index displays coherent temporal dependence also

in dynamic functional changes within the same session. Fig. 1 gives a schematic representation of a multilayer graph with

two nodes that change community allegiance twice along time. Our rationale is that ASD and schizophrenia subjects have

some brain regions with different flexibility from healthy control subjects due to their connectome miswiring. Moreover, we

are interested in seeing if some of these differences are shared between ASD and schizophrenia subjects. To validate this,

we assessed initially the number of clusters in all our dFC connectomes using the eigengap techniques related to spectral

clustering [36] as a mean eigengap for all connectomes. The eigengap of a linear operator is the difference between two

successive eigenvalues, where eigenvalues are sorted in ascending order. In the context of spectral clustering, we define a

Laplacian matrix L = D − A with D the diagonal matrix containing the degrees of each node in the graph/connectome, and A

the adjacency matrix of the graph in our case defined by the Pearson correlation. Then, we perform an eigendecomposition,

and we denote the ordered eigenvalues of L matrix as λ0 ≥λ1 ≥ ��� ≥λr . The eigengap is largest difference in absolute value

of two consecutive eigenvalues as λi − λi +1 . Therefore, we computed the number of clusters as a mean μ across all the

connectomes for those largest value 

k = μ

[
argmax 

i 

( λi − λi +1 ) 

]
, ∀ i ∈ [1 , r − 1] . (3) 

Nevertheless, to avoid clustering techniques which do not take into account the multi-layer nature of dynamic FC matrices,

we resorted to the generalized Louvain modularity which also include the cluster number discovery in its implementation

[20] . More specifically, for an undirected weighted or binary graph the multislice modularity can be defined as 

Q mul tisl ice = 

1 

2 m 

∑ 

i j 

[(
A i jt − γt 

k it k jt 

2 m t 

)
δt + δi j ω 

]
δ(c it , c jt ) , (4) 

where A ijt is the weight of the edge connecting between nodes i and j at time t from the adjacency matrix A , k it and k jt are

the sums of weights of the edges connected to node i and j at t respectively, 2 m t and 2 m are the sum of all of the edge

weights in the graph at time/slice t and for all time/slice respectively, c it and c jt are the communities of nodes i and j at t,

δs are delta functions, ω is the interslice coupling which represents the direct count of the intracommunity edge weights,

and γ t is the spatial resolution [37] . In our experiments we set ω = 0 . 1 and γt = 1 following the suggested used parameters

by Mucha et al. [20] without optimizing them. 
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Table 1 

ROIs found statistically significant comparing schizophrenia to healthy control subjects and 

their p -values. The ROIs significant also using the ASD datasets are highlighted in italic. 

# ROI p -value Schizophrenia-Control 

1 Superior Frontal Gyrus Left < 0.001 

2 Superior Temporal Gyrus, anterior division Left < 0.001 

3 Superior Temporal Gyrus, posterior division Left 0.0013 

4 Middle Temporal Gyrus, posterior division Right < 0.001 

5 Frontal Medial Cortex Left < 0.001 

6 Cingulate Cortex anterior Right 0.0013 

7 Cingulate Cortex posterior Left 0.0010 

Table 2 

ROIs found statistically significant comparing ASD to healthy control subjects and their 

p -values. The ROIs significant also using the schizophrenia datasets are highlighted in 

italic. 

# ROI p -value ASD-Control 

1 Frontal Pole Left < 0.001 

2 Middle Frontal Gyrus Left < 0.001 

3 Inferior Frontal Gyrus, pars triangularis Left < 0.001 

4 Inferior Frontal Gyrus, pars opercularis Right < 0.001 

5 Temporal Pole Left < 0.001 

6 Temporal Pole Right < 0.001 

7 Superior Temporal Gyrus, anterior division Right < 0.001 

8 Superior Temporal Gyrus, posterior division Left < 0.001 

1 Middle Temporal Gyrus, posterior division Left < 0.001 

2 Middle Temporal Gyrus, posterior division Right < 0.001 

3 Inferior Temporal Gyrus, anterior division Left < 0.001 

4 Inferior Temporal Gyrus, posterior division Right < 0.001 

5 Inferior Temporal Gyrus, temporooccipital part Left < 0.001 

6 Inferior Temporal Gyrus, temporooccipital part Right < 0.001 

7 Superior Parietal Lobule Left < 0.001 

8 Lateral Occipital Cortex, inferior division Left < 0.001 

1 Cingulate Cortex posterior Left < 0.001 

2 Cingulate Cortex posterior Right < 0.001 

3 Frontal Orbital Cortex Right < 0.001 

4 Parahippocampal Gyrus, anterior division Left < 0.001 

5 Parahippocampal Gyrus, anterior division Right < 0.001 

6 Parahippocampal Gyrus, posterio division Right < 0.001 

7 Temporal Fusiform Cortex, anterior division Left < 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once clustering has been carried out and module allegiance for each brain region across time is known. Changes across

time can be defined by the flexibility of a node f i normalized by the total number of changes that were possible. Given

all f i index for each brain region and subjects, a statistical framework based on two-tail t -test was used to find statistical

difference between groups (ASD vs control, schizophrenia vs control, and ASD vs schizophrenia). T -test values were then

converted into p-values to check which are statistically significant under the threshold α = 0 . 005 . Afterwards the Benjamini

& Hochberg procedure for controlling the false discovery rate [38] has been conducted and the adjusted p-values are re-

ported in Tables 1 and 2 . 

Moreover, we looked at static and dynamic FC differences using the network based statistics (NBS) [10] . NBS is a nonpara-

metric statistical test used to identify connections within connectivity matrices which are statistically significant different

between two distinct populations [10] . In practice, the NBS checks the family-wise error rate, where the null hypothesis is

tested independently at each of the edges. This is achieved performing a two-sample t -test at each edge independently using

the values of connectivity. The tests are repeated h times, each time randomly permuting members of the two populations.

In our experiments we set h = 10 0 0 . 

As noticed empirically that the NBS was producing about 300 connection using a p-value threshold related to the t -test

of α = 0 . 05 (proportionally in agreement with Mastrovito et al. [16] ), we lowered the NBS threshold to α = 0 . 01 to allow

visual inspection of those results. 

Most of the used code and the pre-processed time series are available online at the URL https://github.com/alecrimi/

dyfunconnclustering . 

Results 

We carried out the experiments in a nested leave-one-out fashion. It was noted that varying the shape of the non-

overlapping windows has an impact on the classification performed. Generally, dynamic FC matrices led to better classifi-

https://github.com/alecrimi/dyfunconnclustering
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Fig. 2. AUC varying according to the number of windows used and therefore the shape of the windows. The static FC is represented by the value win- 

dow = 1. 

Fig. 3. ROCs for static functional connectivity analysis. (a) ASD and schizophrenia (b). 

 

 

 

 

 

 

 

 

 

 

 

 

cation than static FC. Fig. 2 depicts all AUC values for both datasets for both static FC (1 window), and different windows

size (2 or more windows) for the dynamic FC. We consider 13 windows as the lower limit as this setting requires windows

of 10 time-points which is expected to be the minimum considering the cut-off frequency defined in the preprocessing of

0.1 Hz [27] . It can be noted that several windowing condition can lead to similar results. 

Ultimately, for the ASD dataset the resulting area under the ROC (AUROC) was 0.78 using the static FC matrix, while the

AUROC value was 0.82 using the dynamic FC matrices as shown in Fig. 3 (a). 

For the schizophrenia dataset the AUC was 0.74 if the static FC features were used, and 0.76 if the dynamic FC features

with window size 30 were used, as shown in Fig. 3 (b). 

Surprisingly both the eigengap and the optimization of the Louvain modularity identified the same number of clusters

as k = 4 . The statistically significant areas ( α = 0 . 005 ) according to the flexibility index are reported for schizophrenia and

ASD dataset respectively in Tables 1 and 2 . The experiments with both datasets highlighted the posterior cingulate cortex,

and parts of the superior and middle temporal gyrus as different regions from the flexibility point of view. 

The static local differences detected by using NBS however were not directly comparable between the ASD and

schizophrenia cohorts, apart the presence of DMN related connections to the posterior cingulate gyrus (CGp) and medial

frontal cortex (FMC) as depicted in Fig. 4 . The dynamic local differences detected by using NBS were different from the

static ones. Nevertheless, CGp and superior temporal gyrus left (T1p.L), paracingulate gyrus right (PAC.R) and temporal oc-

cipital fusiform cortex (TOF.L) were the main nodes with statistically different connections as shown in Fig. 5 . 
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Fig. 4. Statistically significant connection detected on the static FC matrices respectively for the schizophrenia (a) sagittal, (b) coronal, and (c) axial view. 

Statistically significant connection of the ASD cohort against respective control (d) sagittal, (e) coronal, and (f) axial view. The grey lines represents the 

discriminant connections for the static FC matrices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussions 

Several studies support the idea of continuum between schizophrenia and ASD. Previous investigations showed that sub-

jects with high-functioning ASD shared similar but more severe impairments in verbal theory of mind than schizophrenia

patients [39] . More recently the analysis of the co-atrophy network of schizophrenia, ASD, and obsessive compulsive disor-

der showed that alterations in certain grey matter ROIs appear to be statistically related to alterations of other grey matter

ROIs consistently in all three disorders [40] . From a diagnostic point of view, it could be useful to identify biomarkers for

psychiatric disorders such as ASD and schizophrenia. It has been already hypothesized that schizophrenia subjects present

higher flexibility indices than control in their connectomes probably due to mechanism modulated by N-methyl-D-aspartate

receptors [41] . In line with this work, our experiments with both datasets highlighted the cingulate gyrus as a different

region from the flexibility point of view. In other words, the cingulate gyrus and middle temporal gyrus for both ASD and

schizophrenia subjects manifest an altered reconfiguration compared to control subjects. This can be explained by the fact

that those regions are among the main hubs of the default mode network (DMN) which is known to be different for both

ASD and schizophrenia subjects compared to healthy controls [16] . Many studies have identified the DMN as a collection of

areas that are structural and functional hubs related to supplementary motor-areas, frontal eye fields involved in control of

visual attention [42,43] . Although the two disorders are known to exhibit significant changes in connectivity in the DMN, the

two disorders display different connectivity alterations. ASD subjects exhibit a greater proportion of within-network changes

in the DMN and reduced connectivity between DMN and language areas. Conversely, schizophrenia changes between DMN

and language areas are increased in connectivity [44] . 

Despite the local differences identified by NBS were not directly comparable between the ASD and schizophrenia cohorts,

the detected discriminant connections individually for ASD and schizophrenia are in line with connections detected by other

works [15,16,45] . Nevertheless, the general spread miswiring for both disorders yet suggests the hypothesis that schizophre-

nia is part of the autism spectrum as the two disorders clearly overlap at some aspects [9] . Further hypothesis also relate
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Fig. 5. Discriminant connections detected by NBS for different windows ordered temporally from left to right. (a) Schizophreana and (b) ASD. The brown 

lines represent the discriminant connections for the dynamic FC matrices. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

attention deficit hyperactivity disorder (ADHD) to the spectrum [46,47] . Additional investigations relating ADHD to ASD or

schizophrenia could be interesting but they are beyond the purpose of this paper. 

Alternatively to Pearson correlation, partial correlation measure the strength of the relationship between two variables,

while after ruling out third-party effects [48] . Despite partial correlation would be expected to be more reliable, Smith

et al. showed that both correlation methods provide reliable estimates of functional connections, but Pearson correlation

outperforms partial correlation when the number of nodes in brain networks significantly increased [49] . Moreover, in a

comprehensive comparison Pearson correlation-based brain networks had the most reliable topological properties compared 

to those estimated by using partial correlation and an atlas with similar parcellation to those used in our experiments [50] .

A limitation of the study is given by the two cohorts (ASD/control and schizophrenia/control) being acquired by different

centers with slightly different protocols. Despite it remains unclear whether potential confounding factors are introduced

by using different scanners. Some studies showed that data can be pooled from different scanners without corroding the

results as for certain measurement of Alzheimer [51] , and in fact both datasets have been used by Mastrovito et al. also

pooling them [16] . However, we cannot completely rule out confounding factors. 

In our experiments the classification using the dynamic FC features outperformed the classification using the static

FC features, though this difference might not necessarily be statistically significant. Comparing the results to state-of-art

method, Yahatama et al. used static FC features and a sparse logistic regression classifier to discriminate ASD from con-

trol subjects obtaining an AUC = 0.93 on a Japanese cohort and AUC = 0.74 on the ABIDE dataset, but lower results on

an another schizophrenia dataset [15] . Therefore, it seems that performances are strictly related to the cohort in use. Fur-

thermore, Mastrovito et al. using static FC features on similar datasets to those used in the proposed approach, obtained

accuracy ranging from 33% to 83% on the ASD dataset, and from 35% to 80% for the schizophrenia dataset varying the used

features [16] . Therefore, this suggests that a further improvement could be obtained using dimensionality reduction or inde-

pendent component analysis, as shown in [52] . The high dimensionality of the features has also influenced the choice of the

Harvard-Oxford atlas. Indeed, atlases more specific for functional data exist [53] . However, those are generally with higher
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number of ROIs compared to the Harvard-Oxford leading to even higher dimensional features. We have avoided the use of

those highly parcellated atlas as it would have complicated even more the framework but it is nevertheless acknowledged

as a limitation. 

Conclusions 

This work confirm the potentiality of using machine learning techniques - as SVM - jointly to dynamic functional con-

nectivity features as a further tool for discriminating both ASD and Schizophrenia from healthy subjects. Both static and

dynamic functional connectivity can be used as features for this discrimination. Nevertheless, rather than proposing opti-

mal classification for those two disorders, the focus was on their similarities, where the fact that classification by machine

learning and functional connectivity is possible is only one aspect. Indeed, flexibility index and NBS highlighted the impact

of the posterior cingulate gyrus and superior temporal gyrus left for both disorders compared to healthy control. This can

be a starting point to further investigate similarities and overlaps between those and other disorders. 
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